Answer
(a) $h'(2) = 1$
(b) $g'(2) = 8$
Work Step by Step
(a) $h(x) = f(f(x))$
$h'(x) = f'(f(x))\cdot f'(x)$
$h'(2) = f'(f(2))\cdot f'(2)$
$h'(2) = f'(1)\cdot f'(2)$
$h'(2) = (-1)\cdot (-1)$
$h'(2) = 1$
(b) $g(x) = f(x^2)$
$g'(x) = f'(x^2)\cdot 2x$
$g'(2) = f'(2^2)\cdot 2(2)$
$g'(2) = f'(4)\cdot 4$
$g'(2) = (2)\cdot 4$
$g'(2) = 8$