Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 2 - Section 2.8 - The Derivative as a Function - 2.8 Exercises - Page 163: 31

Answer

$f'\left( x \right) = - \frac{1}{{2{{\left( {1 + x} \right)}^{3/2}}}}$ $D_f=(-1,\infty)$ $D_{f'}=(-1,\infty)$

Work Step by Step

$$\eqalign{ & f\left( x \right) = \frac{1}{{\sqrt {1 + x} }} \cr & {\text{The domain of the function is }}\left( { - 1,\infty } \right) \cr & {\text{Using the definition of derivative}}{\text{. }} \cr & f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \frac{{f\left( {x + h} \right) - f\left( x \right)}}{h} \cr & {\text{Therefore}}{\text{,}} \cr & f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \frac{{\frac{1}{{\sqrt {1 + \left( {x + h} \right)} }} - \frac{1}{{\sqrt {1 + x} }}}}{h} \cr & f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \frac{{\sqrt {1 + x} - \sqrt {1 + \left( {x + h} \right)} }}{{h\sqrt {1 + x} \sqrt {1 + \left( {x + h} \right)} }} \cr & {\text{Rationalizing the numerator}} \cr & f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \frac{{\sqrt {1 + x} - \sqrt {1 + \left( {x + h} \right)} }}{{h\sqrt {1 + x} \sqrt {1 + \left( {x + h} \right)} }} \times \frac{{\sqrt {1 + x} + \sqrt {1 + \left( {x + h} \right)} }}{{\sqrt {1 + x} + \sqrt {1 + \left( {x + h} \right)} }} \cr & f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \frac{{{{\left( {\sqrt {1 + x} } \right)}^2} - {{\left( {\sqrt {1 + \left( {x + h} \right)} } \right)}^2}}}{{h\left( {\sqrt {1 + x} \sqrt {1 + \left( {x + h} \right)} } \right)\left( {\sqrt {1 + x} + \sqrt {1 + \left( {x + h} \right)} } \right)}} \cr & f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \frac{{1 + x - 1 - \left( {x + h} \right)}}{{h\left( {\sqrt {1 + x} \sqrt {1 + \left( {x + h} \right)} } \right)\left( {\sqrt {1 + x} + \sqrt {1 + \left( {x + h} \right)} } \right)}} \cr & f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \frac{{1 + x - 1 - x - h}}{{h\left( {\sqrt {1 + x} \sqrt {1 + \left( {x + h} \right)} } \right)\left( {\sqrt {1 + x} + \sqrt {1 + \left( {x + h} \right)} } \right)}} \cr & f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \frac{{ - h}}{{h\left( {\sqrt {1 + x} \sqrt {1 + \left( {x + h} \right)} } \right)\left( {\sqrt {1 + x} + \sqrt {1 + \left( {x + h} \right)} } \right)}} \cr & f'\left( x \right) = - \mathop {\lim }\limits_{h \to 0} \frac{1}{{\left( {\sqrt {1 + x} \sqrt {1 + \left( {x + h} \right)} } \right)\left( {\sqrt {1 + x} + \sqrt {1 + \left( {x + h} \right)} } \right)}} \cr & {\text{Evaluate the limit when }}h \to 0 \cr & f'\left( x \right) = - \mathop {\lim }\limits_{h \to 0} \frac{1}{{\left( {\sqrt {1 + x} \sqrt {1 + x} } \right)\left( {\sqrt {1 + x} + \sqrt {1 + x} } \right)}} \cr & f'\left( x \right) = - \mathop {\lim }\limits_{h \to 0} \frac{1}{{\left( {1 + x} \right)\left( {2\sqrt {1 + x} } \right)}} \cr & f'\left( x \right) = - \mathop {\lim }\limits_{h \to 0} \frac{1}{{2{{\left( {1 + x} \right)}^{3/2}}}} \cr & {\text{The domain of the derivative of the function is is }}\left( { - 1,\infty } \right) \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.