Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 2 - Section 2.8 - The Derivative as a Function - 2.8 Exercises - Page 163: 25

Answer

$A'\left( p \right) = 12{p^2} + 3$

Work Step by Step

$$\eqalign{ & A\left( p \right) = 4{p^3} + 3p \cr & {\text{The domain of the function is }}\left( { - \infty ,\infty } \right) \cr & {\text{Using the definition of derivative}} \cr & f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \frac{{f\left( {x + h} \right) - f\left( x \right)}}{h} \cr & {\text{Therefore}}{\text{,}} \cr & A'\left( p \right) = \mathop {\lim }\limits_{h \to 0} \frac{{4{{\left( {p + h} \right)}^3} + 3\left( {p + h} \right) - \left[ {4{p^3} + 3p} \right]}}{h} \cr & {\text{Expand and simplify}} \cr & A'\left( p \right) = \mathop {\lim }\limits_{h \to 0} \frac{{4\left( {{p^3} + 3{p^2}h + 3p{h^2} + {h^3}} \right) + 3\left( {p + h} \right) - 4{p^3} - 3p}}{h} \cr & A'\left( p \right) = \mathop {\lim }\limits_{h \to 0} \frac{{4{p^3} + 12{p^2}h + 12p{h^2} + 4{h^3} + 3p + 3h - 4{p^3} - 3p}}{h} \cr & A'\left( p \right) = \mathop {\lim }\limits_{h \to 0} \frac{{12{p^2}h + 12p{h^2} + 4{h^3} + 3h}}{h} \cr & A'\left( p \right) = \mathop {\lim }\limits_{h \to 0} \frac{{\left( {12{p^2} + 12ph + 4{h^2} + 3} \right)h}}{h} \cr & A'\left( p \right) = \mathop {\lim }\limits_{h \to 0} \left( {12{p^2} + 12ph + 4{h^2} + 3} \right) \cr & {\text{Evaluate the limit when }}h \to 0 \cr & A'\left( p \right) = 12{p^2} + 12p\left( 0 \right) + 4{\left( 0 \right)^2} + 3 \cr & A'\left( p \right) = 12{p^2} + 3 \cr & {\text{The domain of the derivative of the function is }}\left( { - \infty ,\infty } \right) \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.