Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 2 - Section 2.3 - Calculating Limits Using the Limit Laws - 2.3 Exercises - Page 102: 8

Answer

$18$

Work Step by Step

$$\eqalign{ & \mathop {\lim }\limits_{x \to 3} \root 3 \of {x + 5} \left( {2{x^2} - 3x} \right) \cr & \cr & {\text{Use the Product Law}} \cr & \mathop {\lim }\limits_{x \to a} \left[ {f\left( x \right)g\left( x \right)} \right] = \mathop {\lim }\limits_{x \to a} f\left( x \right) \cdot \mathop {\lim }\limits_{x \to a} g\left( x \right) \cr & \mathop {\lim }\limits_{x \to 3} \root 3 \of {x + 5} \left( {2{x^2} - 3x} \right) = \left[ {\mathop {\lim }\limits_{x \to 3} \root 3 \of {x + 5} } \right]\left[ {\mathop {\lim }\limits_{x \to 3} \left( {2{x^2} - 3x} \right)} \right] \cr & \cr & {\text{Use the Root Law }}\mathop {\lim }\limits_{x \to a} \root n \of {f\left( x \right)} = \root n \of {\mathop {\lim }\limits_{x \to a} f\left( x \right)} ,{\text{ }}n{\text{ }} \in {\text{ Z + }} \cr & and{\text{ Use the Sum and Difference Laws }} \cr & = \left[ {\root 3 \of {\mathop {\lim }\limits_{x \to 3} \left( {x + 5} \right)} } \right]\left[ {\mathop {\lim }\limits_{x \to 3} \left( {2{x^2}} \right) - \mathop {\lim }\limits_{x \to 3} \left( {3x} \right)} \right] \cr & = \left[ {\root 3 \of {\mathop {\lim }\limits_{x \to 3} \left( x \right) + \mathop {\lim }\limits_{x \to 3} \left( 5 \right)} } \right]\left[ {\mathop {\lim }\limits_{x \to 3} \left( {2{x^2}} \right) - \mathop {\lim }\limits_{x \to 3} \left( {3x} \right)} \right] \cr & \cr & {\text{Use the Constant Multiple Law }} \cr & \mathop {\lim }\limits_{x \to a} \left[ {cf\left( x \right)} \right] = c\mathop {\lim }\limits_{x \to a} f\left( x \right) \cr & = \left[ {\root 3 \of {\mathop {\lim }\limits_{x \to 3} \left( x \right) + \mathop {\lim }\limits_{x \to 3} \left( 5 \right)} } \right]\left[ {\mathop {2\lim }\limits_{x \to 3} \left( {{x^2}} \right) - 3\mathop {\lim }\limits_{x \to 3} \left( x \right)} \right] \cr & \cr & {\text{Use The power Law }}\mathop {\lim }\limits_{x \to a} {x^n} = {a^n}{\text{, }}n{\text{ is a positive integer }} \cr & {\text{and the laws }}\mathop {\lim }\limits_{x \to a} x = a,{\text{ }}\mathop {\lim }\limits_{x \to a} c = c,{\text{ then}} \cr & = \left[ {\root 3 \of {\left( 3 \right) + \left( 5 \right)} } \right]\left[ {2{{\left( 3 \right)}^2} - 3\left( 3 \right)} \right] \cr & {\text{Simplifying}} \cr & = \left[ {\root 3 \of 8 } \right]\left[ 9 \right] \cr & = 18 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.