Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 2 - Section 2.3 - Calculating Limits Using the Limit Laws - 2.3 Exercises - Page 102: 3

Answer

$75$

Work Step by Step

$$\eqalign{ & \mathop {\lim }\limits_{x \to 5} \left( {4{x^2} - 5x} \right) \cr & {\text{Suppose that }}c{\text{ is a constant and the limits }} \cr & {\text{ }}\mathop {\lim }\limits_{x \to a} f\left( x \right){\text{ and }}\mathop {\lim }\limits_{x \to a} g\left( x \right) \cr & \cr & {\text{Use the Difference Law }} \cr & \mathop {\lim }\limits_{x \to a} \left[ {f\left( x \right) - g\left( x \right)} \right] = \mathop {\lim }\limits_{x \to a} f\left( x \right) - \mathop {\lim }\limits_{x \to a} g\left( x \right) \cr & \mathop {\lim }\limits_{x \to 5} \left( {4{x^2} - 5x} \right) = \mathop {\lim }\limits_{x \to 5} \left( {4{x^2}} \right) - \mathop {\lim }\limits_{x \to 5} 5x \cr & \cr & {\text{Use the Constant Multiple Law }} \cr & \mathop {\lim }\limits_{x \to a} \left[ {cf\left( x \right)} \right] = c\mathop {\lim }\limits_{x \to a} f\left( x \right) \cr & \mathop {\lim }\limits_{x \to 5} \left( {4{x^2}} \right) - \mathop {\lim }\limits_{x \to 5} 5x \cr & = 4\mathop {\lim }\limits_{x \to 5} \left( {{x^2}} \right) - 5\mathop {\lim }\limits_{x \to 5} \left( x \right) \cr & \cr & {\text{Use The power Law }}\mathop {\lim }\limits_{x \to a} {x^n} = {a^n}{\text{, }}n{\text{ is a positive integer }} \cr & {\text{and the law}}\mathop {\lim }\limits_{x \to a} x = a,{\text{ then}} \cr & 4\mathop {\lim }\limits_{x \to 5} \left( {{x^2}} \right) - 5\mathop {\lim }\limits_{x \to 5} \left( x \right) = 4{\left( 5 \right)^2} - 5\left( 5 \right) \cr & {\text{Simplifying}} \cr & = 4\left( {25} \right) - 25 \cr & = 75 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.