Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 2 - Section 2.3 - Calculating Limits Using the Limit Laws - 2.3 Exercises - Page 102: 1

Answer

a) $\lim\limits_{x \to 2}[f(x)+5g(x)]=-6$ b) $\lim\limits_{x \to 2}[g(x)]^3=-8$ c) $\lim\limits_{x \to 2}\sqrt{f(x)}=2$ d) $\lim\limits_{x \to 2}\frac{3f(x)}{g(x)}=-6$ e) $\lim\limits_{x \to 2}\frac{g(x)}{h(x)}$ does not exist f) $\lim\limits_{x \to 2}\frac{g(x)h(x)}{f(x)}=0$

Work Step by Step

a) $\lim\limits_{x \to 2}[f(x) + 5g(x)]=\lim\limits_{x \to 2}f(x)+5\lim\limits_{x \to 2}g(x)=4+5\times(-2)=-6$ b) $\lim\limits_{x \to 2}[g(x)]^3=[\lim\limits_{x \to 2}g(x)]^3=(-2)^3=-8$ c) $\lim\limits_{x \to 2}\sqrt {f(x)}=\sqrt{\lim\limits_{x \to 2}f(x)}=\sqrt4=2$ d) $\lim\limits_{x \to 2}\frac{3f(x)}{g(x)}=\frac{3\times\lim\limits_{x \to 2}f(x)}{\lim\limits_{x \to 2}g(x)}=\frac{3\times4}{-2}=-6$ e) $\lim\limits_{x \to 2}\frac{g(x)}{h(x)}=\frac{\lim\limits_{x \to 2}g(x)}{\lim\limits_{x \to 2}h(x)}$ However, we notice that $\lim\limits_{x \to 2}h(x)=0$ Therefore, this limit is undefined and as a result, does not exist. f) $\lim\limits_{x \to 2}\frac{g(x)h(x)}{f(x)}=\frac{\lim\limits_{x \to 2}g(x)\times\lim\limits_{x \to 2}h(x)}{\lim\limits_{x \to 2}f(x)}=\frac{(-2)\times 0}{4}=0$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.