Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 2 - Problems Plus - Problems - Page 172: 9

Answer

$$\lim _{x \rightarrow a} [f(x)g(x)]=\frac{3}{4}$$

Work Step by Step

Since $$ \begin{split} \lim _{x \rightarrow a} f(x) &=\lim _{x \rightarrow a}\left(\frac{1}{2}[f(x)+g(x)]+\frac{1}{2}[f(x)-g(x)]\right) \\ & \frac{1}{2} \lim _{x \rightarrow a}[f(x)+g(x)]+\frac{1}{2} \lim _{x \rightarrow a}[f(x)-g(x)] \\ & =\frac{1}{2} \cdot 2+\frac{1}{2} \cdot 1\\ & =\frac{3}{2} \end{split} $$ and $$ \begin{split} \lim _{x \rightarrow a} g(x) &=\lim _{x \rightarrow a}([f(x)+g(x)]-f(x)) \\ &=\lim _{x \rightarrow a}[f(x)+g(x)]-\lim _{x \rightarrow a} f(x)\\ & =2-\frac{3}{2} \\ & =\frac{1}{2}. \end{split} $$ Then $$ \begin{split} \lim _{x \rightarrow a}[f(x) g(x)]&=\left[\lim _{x \rightarrow a} f(x)\right]\left[\lim _{x \rightarrow a} g(x)\right]\\ &=\frac{3}{2} \cdot \frac{1}{2}\\ &=\frac{3}{4}. \end{split} $$ Therefore, if $$\lim _{x \rightarrow a} [f(x)+g(x)]=2$$ and $$\lim _{x \rightarrow a} [f(x)-g(x)]=1$$ , then $$\lim _{x \rightarrow a} [f(x)g(x)]=\frac{3}{4}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.