Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 2 - Problems Plus - Problems - Page 172: 13

Answer

(a) $$ f(0)=0 $$ (b) $$ f^{\prime}(0)=1 $$ (c) $$ f^{\prime } (x)=1+x^{2} $$

Work Step by Step

Since $$ f(x+y)=f(x)+f(y)+x^{2}y+xy^{2} \quad\quad (*) $$ (a) To find $f(0)$, put $x=0$ and $y=0$ into the equation above: $$ f(0+0)=f(0)=f(0)+f(0)+0^{2} .0+0 .0^{2} =2 f(0) $$ $\Rightarrow $ $$ f(0)=0 $$ (b) To find $f^{\prime } (0)$: $$ \begin{aligned} f^{\prime}(0) &=\lim _{h \rightarrow 0} \frac{f(0+h)-f(0)}{h} \\ &=\lim _{h \rightarrow 0} \frac{\left[f(0)+f(h)+0^{2} h+0 h^{2}\right]-f(0)}{h} \\ &=\lim _{h \rightarrow 0} \frac{f(h)}{h} \\ &=\lim _{x \rightarrow 0} \frac{f(x)}{x} \\ &=1 \end{aligned} $$ (c) To find $f^{\prime } (x)$ $$ \begin{aligned} f^{\prime}(x) &=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\ &=\lim _{h \rightarrow 0} \frac{\left[f(x)+f(h)+x^{2} h+x h^{2}\right]-f(x)}{h} \\ &=\lim _{h \rightarrow 0} \frac{f(h)+x^{2} h+x h^{2}}{h} \\ &=\lim _{h \rightarrow 0}\left[\frac{f(h)}{h}+x^{2}+x h\right] \\ &=1+x^{2} \end{aligned} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.