Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 2 - Problems Plus - Problems - Page 172: 12

Answer

$g'(x) = x~f'(x)+f(x)$

Work Step by Step

$g(x) = x~f(x)$ We can find an expression for $g'(x)$: $g'(x) = \lim\limits_{h \to 0}\frac{g(x+h)-g(x)}{h}$ $g'(x) = \lim\limits_{h \to 0}\frac{(x+h)~f(x+h)-x~f(x)}{h}$ $g'(x) = \lim\limits_{h \to 0}\frac{x~f(x+h)-x~f(x)+h~f(x+h)}{h}$ $g'(x) = \lim\limits_{h \to 0}\frac{x~f(x+h)-x~f(x)}{h}+\lim\limits_{h \to 0}\frac{h~f(x+h)}{h}$ $g'(x) = x~\Big(\lim\limits_{h \to 0}\frac{f(x+h)-f(x)}{h}\Big)+\lim\limits_{h \to 0}f(x+h)$ $g'(x) = x~f'(x)+f(x)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.