Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 1 - Section 1.5 - Inverse Functions and Logarithms - 1.5 Exercises - Page 66: 72

Answer

$sin (2~arcos~x)= 2x~\sqrt{1-x^2}$

Work Step by Step

Suppose that: $cos ~\theta = x$ Then: $\frac{adj}{hyp} = \frac{x}{1}$ Then: $opp = \sqrt{1-x^2}$ We can find $sin (2 ~arccos ~x)$: $sin (2~arcos~x)$ $= sin (2~\theta)$ $= 2~sin (\theta)~cos(\theta)$ $= 2~\cdot \frac{opp}{hyp}~\cdot \frac{adj}{hyp}$ $= 2\cdot \frac{\sqrt{1-x^2}}{1}\cdot \frac{x}{1}$ $= 2x~\sqrt{1-x^2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.