Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 1 - Section 1.5 - Inverse Functions and Logarithms - 1.5 Exercises - Page 66: 67

Answer

a) $\cot^{-1}(-\sqrt3)=\frac{5\pi}{6}$ b) $\sec^{-1}2=\frac{\pi}{3}$

Work Step by Step

a) let $\cot^{-1}(-\sqrt3)=\theta, 0\lt\theta\lt\pi$ $\cot\theta=-\sqrt3$ $\tan\theta=\frac{-1}{\sqrt3}$ $\theta=-\frac{\pi}{6}+k\pi$, where k is an integer. $\because 0\lt\theta\lt\pi,$ let $k=1, \theta=\frac{5\pi}{6}$ $\therefore \cot^{-1}(-\sqrt3)=\frac{5\pi}{6}$ b) let $\sec^{-1}2=\theta, 0\leq\theta\leq\pi, \theta\neq\frac{\pi}{2}$ $\sec\theta=2$ $\cos\theta=\frac{1}{2}$ $\theta=\pm\frac{\pi}{3}+2k\pi$, where k is an integer. $\because 0\leq\theta\leq\pi, \theta\neq\frac{\pi}{2},$ let $k=0, \theta=\frac{\pi}{3}$ $\therefore \sec^{-1}2=\frac{\pi}{3}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.