Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 1 - Section 1.5 - Inverse Functions and Logarithms - 1.5 Exercises - Page 66: 65

Answer

a) $\csc^{-1}\sqrt2=\frac{\pi}{4}$ b) $\arcsin1=\frac{\pi}{2}$

Work Step by Step

a) let $\csc^{-1}\sqrt2=\theta, -\frac{\pi}{2}\leq\theta\leq\frac{\pi}{2}, \theta\neq0$ $\csc\theta=\sqrt2$ $\sin\theta=\frac{1}{\sqrt2}$ $\theta=\frac{\pi}{4}+2k\pi, \frac{3\pi}{4}+2k\pi$ where k is an integer $\because -\frac{\pi}{2}\leq\theta\leq\frac{\pi}{2}, \theta\neq0$, let $k=0, \theta=\frac{\pi}{4}$ $\therefore \csc^{-1}\sqrt2=\frac{\pi}{4}$ b) let $\arcsin1=\theta, -\frac{\pi}{2}\leq\theta\leq\frac{\pi}{2}$ $\sin\theta=1$ $\theta=\frac{\pi}{2}+2k\pi$ where k is an integer $\because -\frac{\pi}{2}\leq\theta\leq\frac{\pi}{2}$, let $k=0, \theta=\frac{\pi}{2}$ $\therefore \arcsin1=\frac{\pi}{2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.