Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 1 - Section 1.3 - New Functions from Old Functions - 1.3 Exercises - Page 44: 38

Answer

(a) $f \circ g = \frac{sin~2x}{1+sin~2x}$ domain: all real numbers except $(\frac{3\pi}{4}+n\pi)$, where $n$ is an integer (b) $g \circ f = sin~(\frac{2x}{1+x})$ domain: $(-\infty, -1) \cup (-1, \infty)$ (c) $f \circ f = \frac{x}{1+2x}$ domain: $(-\infty, -1) \cup (-1,-\frac{1}{2}) \cup (-\frac{1}{2}, \infty)$ (d) $g \circ g = sin~(2~sin~2x)$ domain: all real numbers

Work Step by Step

$f(x) = \frac{x}{1+x}$, $g(x) = sin~2x$ (a) We can find $f \circ g$: $f \circ g = \frac{sin~2x}{1+sin~2x}$ The domain includes all real numbers except: $1 + sin~2x = 0$ $sin~2x = -1$ $x = \frac{3\pi}{4}+n\pi$, where $n$ is an integer domain: all real numbers except $(\frac{3\pi}{4}+n\pi)$, where $n$ is an integer (b) We can find $g \circ f$: $g \circ f = sin~(\frac{2x}{1+x})$ domain: $(-\infty, -1) \cup (-1, \infty)$ (c) We can find $f \circ f$: $f \circ f = \frac{(\frac{x}{1+x})}{1+(\frac{x}{1+x})}$ $f \circ f = \frac{\frac{x}{1+x}}{\frac{1+x}{1+x}~+\frac{x}{1+x}}$ $f \circ f = \frac{\frac{x}{1+x}}{\frac{1+2x}{1+x}}$ $f \circ f = \frac{x}{1+x}\cdot \frac{1+x}{1+2x}$ $f \circ f = \frac{x}{1+2x}$ The domain includes all real numbers except $-\frac{1}{2}$ and $-1$ domain: $(-\infty, -1) \cup (-1,-\frac{1}{2}) \cup (-\frac{1}{2}, \infty)$ (d) We can find $g \circ g$: $g \circ g = sin~(2~sin~2x)$ domain: all real numbers
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.