Elementary Technical Mathematics

Published by Brooks Cole
ISBN 10: 1285199197
ISBN 13: 978-1-28519-919-1

Chapter 6 - Section 6.9 - Reciprocal Formulas Using a Calculator - Exercises - Page 262: 24

Answer

$R_{2}=372~\Omega$.

Work Step by Step

Given $\frac{1}{R}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}+\frac{1}{R_{4}}$ $R=155~\Omega, R_{1}=625~\Omega, R_{2}=?, R_{3}=775~\Omega,R_{4}=1150~\Omega$ $\frac{1}{155}=\frac{1}{625}+\frac{1}{R_{2}}+\frac{1}{775}+\frac{1}{1150}$ $\frac{1}{R_{2}}=\frac{1}{155}-(\frac{1}{625}+\frac{1}{775}+\frac{1}{1150})$ Therefore, $R_{2}=372~\Omega$ How to use the calculator: $155*x^{-1}-625*x^{-1}-775*x^{-1}-1150*x^{-1}=x^{-1}=$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.