Elementary Technical Mathematics

Published by Brooks Cole
ISBN 10: 1285199197
ISBN 13: 978-1-28519-919-1

Chapter 12 - Section 12.3 - Triangles - Exercise - Page 399: 20

Answer

a) length of conduit: $A_{1to2}+A_{2to3}+A_{3to4}+A_{4to5}+A_{5to6}=10ft+10.31ft+10ft+7.21ft+10ft=47.52ft$ b) straight-line distance: $41.0~ft$

Work Step by Step

(a) To find the length of the conduit, we add the blue segments. We know all the horizontal values of the conduit but we do not know the diagonals. The diagonals can be calculated as the hypotenuses of the right triangles they form with the measurements given in Illustration 8. So, for segment $A_{2}$ to $ A_{3}$: $a=4ft$ $b=9.5ft$ Using the Pythagorean Theorem $A_{2to3}=\sqrt {a^{2}+b^{2}}=\sqrt {(4ft)^{2}+(9.5ft)^{2}}=10.31ft$ And, for segment $A_{4}$ to $ A_{5}$: $a=4ft$ $b=15.5ft-9.5ft=6ft$ Using the Pythagorean Theorem $A_{4to5}=\sqrt {a^{2}+b^{2}}=\sqrt {(4ft)^{2}+(6ft)^{2}}=7.21ft$ So, the length of conduit is $=A_{1to2}+A_{2to3}+A_{3to4}+A_{4to5}+A_{5to6}=10ft+10.31ft+10ft+7.21ft+10ft=47.52ft$ (b) The straight-line distance is the diagonal distance from the starting point (1) to the end point (6). This forms a right triangle with sides: $10+4+10+4+10=38~ft$ and $15.5~ft$ Now, we find the hypotenuse with the Pythagorean Theorem: $A_{1to6}=\sqrt {a^{2}+b^{2}}=\sqrt {(38ft)^{2}+(15.5ft)^{2}}=41.0~ft$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.