Answer
$2\sqrt[3]2$
Work Step by Step
$\frac{\sqrt[3]{32}}{\sqrt[3]2}$
Rationaize the denominator.
$\frac{\sqrt[3]{32}\times\sqrt[3]2\times\sqrt[3]2}{\sqrt[3]2\times\sqrt[3]2\times\sqrt[3]2}$
Use the product rule for nth roots.
$\frac{\sqrt[3]{128}}{2}$
Factor out perfect cubes.
$\frac{\sqrt[3]{(64)(2)}}{2}$
Simplify.
$\frac{4\sqrt[3]{2}}{2}$
$2\sqrt[3]2$