Answer
$(3y+4)(y-1) $
Work Step by Step
Factoring by grouping:
1. Multiply the leading coefficient, a, and the constant, c.
2. Find the factors of ac whose sum is b.
3. Rewrite the middle term, bx, as a sum or difference using the factors from step 2.
4. Factor by grouping
---
Always start by searching for a GCF.... none (other than 1).
1. $ac=-12$
2. sum = $+1$ ... factors: $+4$ and $-3$
3.
$3y^{2}+y-4=(3y^{2}-3y)+(4y-4)$
4.
... $=3y(y-1)+4(y-1)$
$=(3y+4)(y-1)$
Check by FOIL$\qquad (3y+4)(y-1) $=
$F:\quad 3y^{2}$
$O:\quad -3y$
$I:\quad +4y$
$L:\quad -4$
$(3y+4)(y-1) $= $3y^{2}+y-4$