Answer
$ (x+4)(2x+3) $
Work Step by Step
Factoring by grouping:
1. Multiply the leading coefficient, a, and the constant, c.
2. Find the factors of ac whose sum is b.
3. Rewrite the middle term, bx, as a sum or difference using the factors from step 2.
4. Factor by grouping
---
Always start by searching for a GCF.... none (other than 1).
1. $ac=24$
2. sum = $11$... factors: $3$ and $8$
3.
$2x^{2}+11x+12=(2x^{2}+ 8x)+(3x+12)$
4.
... $=2x(x+1)+3( x+4)$
$=(x+4)(2x+3)$
Check by FOIL$\qquad (x+4)(2x+3) $=
$F:\quad 2x^{2}$
$O:\quad +3x$
$I:\quad +8x$
$L:\quad +12$
$ (x+4)(2x+3) $= $2x^{2}+11x+12$