Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 8 - Section 8.2 - The Quadratic Formula - Exercise Set - Page 610: 105

Answer

TRUE The quadratic form of the equation is $ax^2+bx+c=0$. Thus, in the given equation $x^2 - 9 = 0$, $a=1$, $b=0$, and $c=-9$. The equation can therefore be solved using the quadratic formula. $x = \frac{-b±\sqrt{b^2-4ac}}{2a}$ $x = \frac{-0±\sqrt{0^2-(4⋅1-9)}}{2⋅1}$ $x = \frac{±\sqrt{-(-36)}}{2}$ $x = \frac{±\sqrt{36}}{2}$ $x = \frac{±6}{2}$ $x = \frac{6}{2}$ or $x = -\frac{6}{2}$ $x = 3$ or $x = -3$

Work Step by Step

The quadratic form of the equation is $ax^2+bx+c=0$. Thus, in the given equation $x^2 - 9 = 0$, $a=1$, $b=0$, and $c=-9$. The equation can therefore be solved using the quadratic formula. $x = \frac{-b±\sqrt{b^2-4ac}}{2a}$ $x = \frac{-0±\sqrt{0^2-(4⋅1-9)}}{2⋅1}$ $x = \frac{±\sqrt{-(-36)}}{2}$ $x = \frac{±\sqrt{36}}{2}$ $x = \frac{±6}{2}$ $x = \frac{6}{2}$ or $x = -\frac{6}{2}$ $x = 3$ or $x = -3$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.