Answer
TRUE
The quadratic form of the equation is $ax^2+bx+c=0$.
Thus, in the given equation $x^2 - 9 = 0$, $a=1$, $b=0$, and $c=-9$.
The equation can therefore be solved using the quadratic formula.
$x = \frac{-b±\sqrt{b^2-4ac}}{2a}$
$x = \frac{-0±\sqrt{0^2-(4⋅1-9)}}{2⋅1}$
$x = \frac{±\sqrt{-(-36)}}{2}$
$x = \frac{±\sqrt{36}}{2}$
$x = \frac{±6}{2}$
$x = \frac{6}{2}$ or $x = -\frac{6}{2}$
$x = 3$ or $x = -3$
Work Step by Step
The quadratic form of the equation is $ax^2+bx+c=0$.
Thus, in the given equation $x^2 - 9 = 0$, $a=1$, $b=0$, and $c=-9$.
The equation can therefore be solved using the quadratic formula.
$x = \frac{-b±\sqrt{b^2-4ac}}{2a}$
$x = \frac{-0±\sqrt{0^2-(4⋅1-9)}}{2⋅1}$
$x = \frac{±\sqrt{-(-36)}}{2}$
$x = \frac{±\sqrt{36}}{2}$
$x = \frac{±6}{2}$
$x = \frac{6}{2}$ or $x = -\frac{6}{2}$
$x = 3$ or $x = -3$