Answer
$x = 2\sqrt {6}-3$ or $x = -2\sqrt {6}-3$
Work Step by Step
$(x + 3)^2 = 24$
Using the Square Root Property $u^2 = d$, then $u = \sqrt d$ or $u = - \sqrt d$. Thus,
$x+3 = \sqrt {24}$
$x+3 = ±2\sqrt {6}$
Subtract $3$ on both sides.
$x+3-3 = ±2\sqrt {6}-3$
$x = ±2\sqrt {6}-3$
$x = 2\sqrt {6}-3$ or $x = -2\sqrt {6}-3$