Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 7 - Section 7.5 - Multiplying with More Than One Term and Rationalizing Denominators - Exercise Set - Page 552: 146

Answer

$\frac{2x+7}{x^2-4}$.

Work Step by Step

The given expression is $=\frac{2}{x-2}+\frac{3}{x^2-4}$ $=\frac{2}{x-2}+\frac{3}{x^2-2^2}$ Use the special formula $A^2-B^2=(A-B)(A+B)$ $=\frac{2}{x-2}+\frac{3}{(x-2)(x+2)}$ The LCD is $(x-2)(x+2)$. Multiply each numerator and denominator by the extra factor to form the LCD. $=\frac{2(x+2)}{(x-2)(x+2)}+\frac{3}{(x-2)(x+2)}$ Add numerators because denominators are equal. $=\frac{2(x+2)+3}{(x-2)(x+2)}$ Use the distributive property. $=\frac{2x+4+3}{(x-2)(x+2)}$ Simplify. $=\frac{2x+7}{(x-2)(x+2)}$ Use the special formula $(A-B)(A+B)=A^2-B^2$ $=\frac{2x+7}{x^2-2^2}$ Simplify. $=\frac{2x+7}{x^2-4}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.