Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 7 - Section 7.5 - Multiplying with More Than One Term and Rationalizing Denominators - Exercise Set - Page 552: 145

Answer

$\frac{5\sqrt{2}+3 \sqrt{3}-4 \sqrt{6}+2}{23}$

Work Step by Step

Do the rationalization as shown below. \begin{equation} \begin{aligned} \frac{1}{\sqrt{2}+\sqrt{3}+\sqrt{4}} & = \frac{1}{2+\left(\sqrt{2}+\sqrt{3}\right)} \\ & =\frac{1}{2+\left(\sqrt{2}+\sqrt{3}\right)}\cdot \frac{2-\left(\sqrt{2}+\sqrt{3}\right)}{2-\left(\sqrt{2}+\sqrt{3}\right)} \\ & = \frac{2-\left(\sqrt{2}+\sqrt{3}\right)}{4-\left(\sqrt{2}+\sqrt{3}\right)^2}\\ &=\frac{2-(\sqrt{2}+\sqrt{3})}{-(1+2 \sqrt{6})}\\ &=\frac{(\sqrt{2}+\sqrt{3})-2}{(1+2 \sqrt{6})}\cdot \frac{\left(1-2\sqrt{6}\right)}{\left(1-2\sqrt{6}\right)} \\ &=\frac{\sqrt{2}(1-2 \sqrt{6})+\sqrt{3}(1-2 \sqrt{6})-2(1-2 \sqrt{6})}{1-4(6)}\\ &= \frac{\sqrt{2}-2\sqrt{12}+\sqrt{3}-2\sqrt{18}-2+4\sqrt{6}}{-23}\\ &= -\frac{\sqrt{2}-4\sqrt{3}+\sqrt{3}-6 \sqrt{2}-2+4 \sqrt{6}}{23}\\ & = -\frac{-5\sqrt{2}-3 \sqrt{3}+4 \sqrt{6}-2}{23}\\ &= \frac{5\sqrt{2}+3 \sqrt{3}-4 \sqrt{6}+2}{23} \end{aligned} \end{equation} where $$ \left(\sqrt{2}+\sqrt{3}\right)^2= 2+2\sqrt{2}\cdot \sqrt{3}+3= 5+2\sqrt{6} $$ and $$ 4-\left(\sqrt{2}+\sqrt{3}\right)^2= 4-5-2\sqrt{6}= -1-2\sqrt{6}$$ The solution is: $$\frac{1}{\sqrt{2}+\sqrt{3}+\sqrt{4}} = \frac{5\sqrt{2}+3 \sqrt{3}-4 \sqrt{6}+2}{23}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.