Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 3 - Section 3.2 - Problem Solving and Business Applications Using Systems of Equations - Exercise Set - Page 208: 71

Answer

Point slope form $y-5=-2(x+2)$ or $y-13=-2(x+6)$. Slope-intercept form $y=-2x+1$.

Work Step by Step

The given points are $(-2,5)$ and $(-6,13)$ Change in the $y-$coordinates $=13-(5)=8$. Change in the $x-$coordinates $=-6-(-2)=-4$. Slope of the line $m=\frac{change \; in \; y}{change \; in \; x}$. $\Rightarrow m=\frac{8}{-4}$ $\Rightarrow m=-2$ The point slope form of the equation is $\Rightarrow y-y_1=m(x-x_1)$ Plug $(x_1,y_1)=(-2,5)$ and slope $m$ into the above equation. $\Rightarrow y-5=(-2)(x-(-2))$ Simplify. $\Rightarrow y-5=-2(x+2)$ Plug $(x_1,y_1)=(-6,13)$ and slope $m$ into the above equation. $\Rightarrow y-13=(-2)(x-(-6))$ Simplify. $\Rightarrow y-13=-2(x+6)$ Now solve the above equation for $y$. $\Rightarrow y-13=-2(x+6)$ Apply distributive property. $\Rightarrow y-13=-2x-12$ Add $13$ to both sides. $\Rightarrow y-13+13=-2x-12+13$ Add like terms. $\Rightarrow y=-2x+1$ The above equation is the slope-intercept form.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.