Answer
Actual score $=95$.
Work Step by Step
Let the actual test score is $10t+u$.
Reversed test score is $10u+t$.
The difference of both scores is equal to $36$.
In the equation we can write.
$\Rightarrow (10t+u)-(10u+t)=36$
Simplify.
$\Rightarrow 10t+u-10u-t=36$
Add like terms.
$\Rightarrow 9t-9u=36$
Apply distributive property.
$\Rightarrow 9(t-u)=36$
Divide both sides by $9$.
$\Rightarrow t-u=4$ ...... (1)
The sum of the actual test scores is $14$.
In the equation we can write.
$\Rightarrow u+t=14$ ...... (2)
Add equation (1) and (2).
$\Rightarrow t-u+u+t=4+14$
Add like terms.
$\Rightarrow 2t=18$
Divide both sides by $2$.
$\Rightarrow t=9$
Substitute the value of $t$ into equation (2).
$\Rightarrow u+9=14$
Subtract $9$ from both sides.
$\Rightarrow u+9-9=14-9$
Simplify.
$\Rightarrow u=5$
Actual score $=10t+u$.
Plug both values.
$=10(9)+5$
$=90+5$
$=95$.