Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 11 - Section 11.1 - Sequences and Summation Notation - Exercise Set - Page 831: 80

Answer

False

Work Step by Step

Let us consider left hand side $\sum_{i=0}^6(-1)^i(i+1)^2$ or, $=(-1)^0(0+1)^2+(-1)^1(1+1)^2+(-1)^2(2+1)^2+(-1)^3(3+1)^2+(-1)^4(4+1)^2+(-1)^5(5+1)^2+(-1)^6(6+1)^2$ or, $=1^2-2^2+3^2-4^2+5^2-6^2+7^2$ This can be summed ups as: or, $=\sum_{j=1}^7(-1)^{(j+1)}j^2$ or, $=-\sum_{j=1}^7(-1)^{j}j^2$ thus, L.H.S $\ne$ R.H.S
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.