Answer
$g^{-1}(t) = -\frac{t-8}{4}$
Work Step by Step
$g(t) = -4t + 8$
Let $g(t) = y$:
$y = -4t + 8$
Switch the variables $t$ and $y$ to find the inverse:
$t = -4y + 8$
$t - 8 = -4y$
$y = -\frac{t-8}{4}$
$g^{-1}(t) = -\frac{t-8}{4}$