Answer
$x^{2}+2x-1$
Work Step by Step
We are given that $f(x)=x^{2}-2$, $g(x)=x+1$, and $h(x)=x^{3}-x^{2}$.
We know that $(f\circ g)(x)=f(g(x))$.
Therefore, $(f\circ g)(x)=f(g(x))=f(x+1)=(x+1)^{2}-2$.
We know that a binomial of the form $(a+b)^{2}$ will simplify to $a^{2}+2ab+b^{2}$.
Therefore, $(x+1)^{2}-2=x^{2}+2x+1-2=x^{2}+2x-1$.