Intermediate Algebra (6th Edition)

Published by Pearson
ISBN 10: 0321785045
ISBN 13: 978-0-32178-504-6

Chapter 6 - Section 6.2 - Adding and Subtracting Rational Expressions - Exercise Set - Page 354: 69

Answer

$\dfrac{6x}{(x+3)(x-3)(x-3)}$

Work Step by Step

Factoring the given expression, $ \dfrac{x}{x^2-9}+\dfrac{3}{x^2-6x+9}-\dfrac{1}{x+3} ,$ results to \begin{array}{l}\require{cancel} \dfrac{x}{(x+3)(x-3)}+\dfrac{3}{(x-3)(x-3)}-\dfrac{1}{x+3} .\end{array} Using the $LCD= (x+3)(x-3)(x-3) $, the expression above simplifies to \begin{array}{l} \dfrac{(x-3)(x)+(x+3)(3)-(x-3)(x-3)(1)}{(x+3)(x-3)(x-3)} \\\\= \dfrac{x^2-3x+3x+9-(x^2-6x+9)(1)}{(x+3)(x-3)(x-3)} \\\\= \dfrac{x^2-3x+3x+9-x^2+6x-9}{(x+3)(x-3)(x-3)} \\\\= \dfrac{(x^2-x^2)+(-3x+3x+6x)+(9-9)}{(x+3)(x-3)(x-3)} \\\\= \dfrac{6x}{(x+3)(x-3)(x-3)} .\end{array}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.