Answer
$\dfrac{3}{x+4}$
Work Step by Step
Using the$LCD=
(x-5)(x+4)
,$ the given expression, $
\dfrac{1}{x-5}-\dfrac{19-2x}{(x-5)(x+4)}
,$ is
\begin{array}{l}\require{cancel}
\dfrac{(x+4)(1)-1(19-2x)}{(x-5)(x+4)}
\\\\=
\dfrac{x+4-19+2x}{(x-5)(x+4)}
\\\\=
\dfrac{3x-15}{(x-5)(x+4)}
\\\\=
\dfrac{3(x-5)}{(x-5)(x+4)}
\\\\=
\dfrac{3(\cancel{x-5})}{(\cancel{x-5})(x+4)}
\\\\=
\dfrac{3}{x+4}
.\end{array}