Answer
$\dfrac{2}{x-5}$
Work Step by Step
Using the$LCD=
(x-5)(x+4)
,$ the given expression, $
\dfrac{4x-2}{(x-5)(x+4)}-\dfrac{2}{x+4}
,$ is
\begin{array}{l}\require{cancel}
\dfrac{1(4x-2)-(x-5)(2)}{(x-5)(x+4)}
\\\\=
\dfrac{4x-2-2x+10}{(x-5)(x+4)}
\\\\=
\dfrac{2x+8}{(x-5)(x+4)}
\\\\=
\dfrac{2(x+4)}{(x-5)(x+4)}
\\\\=
\dfrac{2(\cancel{x+4})}{(x-5)(\cancel{x+4})}
\\\\=
\dfrac{2}{x-5}
.\end{array}