Answer
The graph is shown below
Work Step by Step
Now write $9=\frac{1}{\frac{1}{9}}$ and $4=\frac{1}{\frac{1}{4}}$, so rewrite equation.
$\frac{{{x}^{2}}}{\frac{1}{9}}+\frac{{{y}^{2}}}{\frac{1}{4}}=1$
Standard equation of Ellipse is:
$\frac{{{x}^{2}}}{{{a}^{2}}}+\frac{{{y}^{2}}}{{{b}^{2}}}=1$
Identifying $a\text{ and }b$ by comparing the equation with the standard equation,
$\begin{align}
& \frac{{{x}^{2}}}{\frac{1}{9}}+\frac{{{y}^{2}}}{\frac{1}{4}}=1 \\
& \frac{{{x}^{2}}}{{{\left( \frac{1}{3} \right)}^{2}}}+\frac{{{y}^{2}}}{{{\left( \frac{1}{2} \right)}^{2}}}=1 \\
\end{align}$
Since $a=\frac{1}{3}\text{ and }b=\frac{1}{2}$, the x-intercepts are $\left( -\frac{1}{3},0 \right)\text{ and }\left( \frac{1}{3},0 \right)$ and the y-intercepts are $\left( 0,-\frac{1}{2} \right)\text{ and }\left( 0,\frac{1}{2} \right)$.