Elementary and Intermediate Algebra: Concepts & Applications (6th Edition)

Published by Pearson
ISBN 10: 0-32184-874-8
ISBN 13: 978-0-32184-874-1

Chapter 12 - Exponential Functions and Logarithmic Functions - 12.7 Applications of Exponential Functions and Logarithmic Functions - 12.7 Exercise Set - Page 834: 16

Answer

The hydrogen ion concentration of the patient’s blood is about $1.58\times {{10}^{-8}}$ moles per liter.

Work Step by Step

To calculate the hydrogen ion concentration of the patient’s blood at this deadly point, substitute $\text{pH}=7.8$ in the formula $\text{pH}=-\log \left[ {{\text{H}}^{\text{+}}} \right]$ and solve for $\left[ {{\text{H}}^{\text{+}}} \right]$ as follows: $\begin{align} & \text{pH}=-\log \left[ {{\text{H}}^{\text{+}}} \right] \\ & 7.8=-\log \left[ {{\text{H}}^{\text{+}}} \right] \\ \end{align}$ Divide by $-1$ on both sides: $\begin{align} & 7.8\left( -1 \right)=-\log \left[ {{\text{H}}^{\text{+}}} \right]\left( -1 \right) \\ & -7.8=\log \left[ {{\text{H}}^{\text{+}}} \right] \end{align}$ The common logarithm has a base of 10, so the above equation can be written as : $-7.8={{\log }_{10}}\left[ {{\text{H}}^{\text{+}}} \right]$ Now convert it into an exponential equation by using the formula ${{\log }_{a}}x=m\rightarrow{{a}^{m}}=x$: $\begin{align} & -7.8={{\log }_{10}}\left[ {{\text{H}}^{\text{+}}} \right] \\ & \left[ {{\text{H}}^{\text{+}}} \right]={{10}^{-7.8}} \\ & ={{10}^{-7.8}} \end{align}$ ${{10}^{-7.8}}\approx 1.58\times {{10}^{-8}}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.