Elementary and Intermediate Algebra: Concepts & Applications (6th Edition)

Published by Pearson
ISBN 10: 0-32184-874-8
ISBN 13: 978-0-32184-874-1

Chapter 12 - Exponential Functions and Logarithmic Functions - 12.7 Applications of Exponential Functions and Logarithmic Functions - 12.7 Exercise Set - Page 834: 11

Answer

a. After about $\text{14 years}$ , the e-book net sales were $\$\ 8\text{ billion}$. b. The doubling time is about $\text{1}\text{.2 years}$.

Work Step by Step

a. Consider the model $S\left( t \right)=2.05{{\left( 1.8 \right)}^{t}}$ Here, $S\left( t \right)$ is the net sales in period $t$ and the variable $t$ represents the exponential growth rate. Replace $S\left( t \right)$ with 8000 ($\left( \$8\text{billion}=\$8000\text{million}\right)$and solve for $t$ to calculate the time $t$when the net sales reach to $\$8\text{billion}$ . $\begin{align} & S\left( t \right)=2.05{{\left( 1.8 \right)}^{t}} \\ & 8000=2.05{{\left( 1.8 \right)}^{t}} \end{align}$ Divide both the sides by $2.05$: $\begin{align} & \frac{8000}{2.05}=\frac{2.05{{\left( 1.8 \right)}^{t}}}{2.05} \\ & 3902.439={{\left( 1.8 \right)}^{t}} \\ \end{align}$ $\log 3902.439=\log {{\left( 1.8 \right)}^{t}}$ Apply the power rule of logarithms $\log {{m}^{n}}=n\log m$ in $\log {{\left( 1.8 \right)}^{t}}$: $\begin{align} & \log 3902.439=\log {{\left( 1.8 \right)}^{t}} \\ & \log 3902.439=t\log 1.8 \\ \end{align}$ Divide by $\log 1.8$ on both the sides: $\begin{align} & \frac{\log 3902.439}{\log 1.8}=\frac{t\log 1.8}{\log 1.8} \\ & \frac{\log 3902.439}{\log 1.8}=t \end{align}$ Therefore, $\begin{align} & \frac{\log 3902.439}{\log 1.8}=t \\ & \frac{3.591}{0.255}\approx t \\ & 14.08\approx t \end{align}$ b. Consider the model $S\left( t \right)=2.05{{\left( 1.8 \right)}^{t}}$ First calculate the net sales in the beginning, $S\left( 0 \right)$: $\begin{align} & S\left( t \right)=2.05{{\left( 1.8 \right)}^{t}} \\ & S\left( 0 \right)=2.05{{\left( 1.8 \right)}^{0}} \\ & =2.05 \end{align}$ Now, doubling time is the amount of time necessary for the net sales to double in size. If the initial sales $S\left( 0 \right)=2.05$, then $2\left( 2.05 \right)=4.10$ is the doubled net sales. Therefore, to find the doubling time, replace $S\left( t \right)$ with $4.10$ in $S\left( t \right)=2.05{{\left( 1.8 \right)}^{t}}$and then solve for $t$: $\begin{align} & S\left( t \right)=2.05{{\left( 1.8 \right)}^{t}} \\ & 4.10=2.05{{\left( 1.8 \right)}^{t}} \end{align}$ $\begin{align} & \frac{4.10}{2.05}=\frac{2.05{{\left( 1.8 \right)}^{t}}}{2.05} \\ & 2={{\left( 1.8 \right)}^{t}} \\ \end{align}$ Take common logarithm on both the sides: $\log 2=\log {{\left( 1.8 \right)}^{t}}$ Apply the power rule of logarithms $\log {{m}^{n}}=n\log m$ in $\log {{\left( 1.8 \right)}^{t}}$: $\begin{align} & \log 2=\log {{\left( 1.8 \right)}^{t}} \\ & \log 2=t\log 1.8 \\ \end{align}$ Divide by $\log 1.8$ on both the sides: $\begin{align} & \log 2=t\log 1.8 \\ & \frac{\log 2}{\log 1.8}=\frac{t\log 1.8}{\log 1.8} \\ & \frac{\log 2}{\log 1.8}=t \\ \end{align}$ Thus: $\begin{align} & \frac{\log 2}{\log 1.8}=t \\ & \frac{0.3010}{0.255}\approx t \\ & 1.18\approx t \end{align}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.