Elementary and Intermediate Algebra: Concepts & Applications (6th Edition)

Published by Pearson
ISBN 10: 0-32184-874-8
ISBN 13: 978-0-32184-874-1

Chapter 12 - Exponential Functions and Logarithmic Functions - 12.5 Common Logarithms and Natural Logarithms - 12.5 Exercise Set - Page 818: 56

Answer

Domain: $\mathbb{R}$. Range: $(0,\infty)$ Graph:

Work Step by Step

The graph of this function is obtained from $f_{1}(x)=e^{x}$, by vertically stretch it by factor 2 (doubling the y-coordinates), AND by horizontally stretching it by factor 2 (doubling the the x-coordinates). AND reflecting it over the y-axis Graph, with a dashed line, the graph of $f_{1}(x)=e^{x}$, as instructed in the solution of exercise 47$:$ ...Graphing $f_{1}(x)=e^{x}$ , ... The base is $e\approx 2.718\gt 1$, so the graph rises on the whole domain. ... Asymptote is the x-axis. ... To the far left, the graph nears but does not cross the asymptote. ... The graph passes through the points ... $(-1,\displaystyle \frac{1}{e}),(0,1),(1,e),(2,e^{2})$, and so on. ... Plot these points and join with a smooth curve. Then, for each of the points used for graphing $f_{1}$ perform the above transformations (double both coordinates, reflect across y) plot the new points, and join with a smooth curve (red on the image). The asymptote remains the x-axis (double of zero is zero).
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.