Elementary and Intermediate Algebra: Concepts & Applications (6th Edition)

Published by Pearson
ISBN 10: 0-32184-874-8
ISBN 13: 978-0-32184-874-1

Chapter 12 - Exponential Functions and Logarithmic Functions - 12.1 Composite Functions and Inverse Functions - 12.1 Exercise Set - Page 789: 99

Answer

Yes

Work Step by Step

Considering the given points in Exercise 98, find the slope of $f\left( x \right)$ as follows. $\begin{align} & m=\frac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}} \\ & =\frac{6.5-6}{7-6} \\ & =\frac{1}{2} \end{align}$ Thus, the slope of $f\left( x \right)$is $\frac{1}{2}$. Evaluate the function $f\left( x \right)$ as follows; it is enough to find that the line equation passes through the points $\left( 6,6 \right)$ with slope $\frac{1}{2}$. $\begin{align} & y-{{y}_{1}}=m\left( x-{{x}_{1}} \right) \\ & y-6=\frac{1}{2}\left( x-6 \right) \\ & y-6=\frac{1}{2}x-3 \\ & y=\frac{1}{2}x+3 \end{align}$ Therefore, the function $f\left( x \right)$ is $f\left( x \right)=\frac{1}{2}x+3$. Considering the given points in exercise 98, find the slope of $g\left( x \right)$ as follows. $\begin{align} & m=\frac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}} \\ & =\frac{8-6}{7-6} \\ & =\frac{2}{1} \\ & =2 \end{align}$ Thus, the slope of $g\left( x \right)$ is 2. Evaluate the function $g\left( x \right)$ as follows; it is enough to find that the line of the equation passes through the points $\left( 6,6 \right)$ with slope $2$. $\begin{align} & y-{{y}_{1}}=m\left( x-{{x}_{1}} \right) \\ & y-6=2\left( x-6 \right) \\ & y-6=2x-12 \\ & y=2x-6 \end{align}$ Therefore, the function $g\left( x \right)$is $g\left( x \right)=2x-6$. Evaluate $\left( f\circ g \right)\left( x \right)$ as follows. $\left( f\circ g \right)\left( x \right)=f\left( g\left( x \right) \right)$ Use the function $g\left( x \right)=2x-6$, $\left( f\circ g \right)\left( x \right)=f\left( 2x-6 \right)$ Use the function $f\left( x \right)=\frac{1}{2}x+3$, $\begin{align} & \left( f\circ g \right)\left( x \right)=\frac{1}{2}\left( 2x-6 \right)+3 \\ & =x-3+3 \\ & =x \end{align}$ Evaluate $\left( g\circ f \right)\left( x \right)$ as follows. $\left( g\circ f \right)\left( x \right)=g\left( f\left( x \right) \right)$ Use the function $f\left( x \right)=\frac{1}{2}x+3$, $\left( g\circ f \right)\left( x \right)=g\left( \frac{1}{2}x+3 \right)$ Use the function $g\left( x \right)=2x-6$, $\begin{align} & \left( g\circ f \right)\left( x \right)=2\left( \frac{1}{2}x+3 \right)-6 \\ & =x+6-6 \\ & =x \end{align}$ Therefore, $f\left( g\left( x \right) \right)=g\left( f\left( x \right) \right)=x$. From the above mentioned definition of inverses of composite functions, it can be concluded that the functions f and g are inverses of each other.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.