Elementary and Intermediate Algebra: Concepts & Applications (6th Edition)

Published by Pearson
ISBN 10: 0-32184-874-8
ISBN 13: 978-0-32184-874-1

Chapter 12 - Exponential Functions and Logarithmic Functions - 12.1 Composite Functions and Inverse Functions - 12.1 Exercise Set - Page 789: 90

Answer

Proved below.

Work Step by Step

$f\left( x \right)\,\,\text{and}\,\,g\left( x \right)$ Evaluate the function $\left( \left( f\circ g \right)\circ h \right)\left( x \right)$ as follows. $\left( \left( f\circ g \right)\circ h \right)\left( x \right)=\left( f\circ g \right)\left( h\left( x \right) \right)$ Apply the definition of composition functions. $\left( \left( f\circ g \right)\circ h \right)\left( x \right)=\left( f\left( g\left( h\left( x \right) \right) \right) \right)$ Use the fact $g\left( h\left( x \right) \right)=\left( g\circ h \right)\left( x \right)$, $\begin{align} & \left( \left( f\circ g \right)\circ h \right)\left( x \right)=f\left( \left( g\circ h \right)\left( x \right) \right) \\ & =\left( f\circ \left( g\circ h \right) \right)\left( x \right) \end{align}$ Hence, it is proved that $\left( \left( f\circ g \right)\circ h \right)\left( x \right)=\left( f\circ \left( g\circ h \right) \right)\left( x \right)$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.