Elementary and Intermediate Algebra: Concepts & Applications (6th Edition)

Published by Pearson
ISBN 10: 0-32184-874-8
ISBN 13: 978-0-32184-874-1

Chapter 12 - Exponential Functions and Logarithmic Functions - 12.1 Composite Functions and Inverse Functions - 12.1 Exercise Set - Page 789: 91

Answer

Proved below.

Work Step by Step

$h\left( x \right)=\left( f\circ g \right)\left( x \right)$ The function $I\left( x \right)$ is defined as $I\left( x \right)=x$; then, $\left( f\circ I \right)\left( x \right)=f\left( I\left( x \right) \right)$ for any function f. To prove that ${{h}^{-1}}\left( x \right)=\left( {{g}^{-1}}\circ {{f}^{-1}} \right)\left( x \right)$ it is enough to show that $\left( \left( {{g}^{-1}}\circ {{f}^{-1}} \right)\circ h \right)\left( x \right)=\left( h\circ \left( {{g}^{-1}}\circ {{f}^{-1}} \right) \right)\left( x \right)=x$. Evaluate $\left( \left( {{g}^{-1}}\circ {{f}^{-1}} \right)\circ h \right)\left( x \right)$ as follows. $\left( \left( {{g}^{-1}}\circ {{f}^{-1}} \right)\circ h \right)\left( x \right)=\left( \left( {{g}^{-1}}\circ {{f}^{-1}} \right)\left( f\circ g \right) \right)\left( x \right)$ Apply the associative property, $\left( \left( {{g}^{-1}}\circ {{f}^{-1}} \right)\circ h \right)\left( x \right)=\left( \left( {{g}^{-1}}\circ \left( {{f}^{-1}}\circ f \right) \right)\circ g \right)\left( x \right)$ Use the definition of composition of inverse functions, $\begin{align} & \left( \left( {{g}^{-1}}\circ {{f}^{-1}} \right)\circ h \right)\left( x \right)=\left( \left( {{g}^{-1}}\circ I \right)\circ g \right)\left( x \right) \\ & =\left( {{g}^{-1}}\circ g \right)\left( x \right) \\ & =x \end{align}$ Therefore, $\left( \left( {{g}^{-1}}\circ {{f}^{-1}} \right)\circ h \right)\left( x \right)=x$. Evaluate $\left( h\circ \left( {{g}^{-1}}\circ {{f}^{-1}} \right) \right)\left( x \right)$ as follows. $\left( h\circ \left( {{g}^{-1}}\circ {{f}^{-1}} \right) \right)\left( x \right)=\left( \left( f\circ g \right)\circ \left( {{g}^{-1}}\circ {{f}^{-1}} \right) \right)\left( x \right)$ Apply the associative property, $\left( h\circ \left( {{g}^{-1}}\circ {{f}^{-1}} \right) \right)\left( x \right)=\left( \left( f\circ \left( g\circ {{g}^{-1}} \right) \right)\circ {{f}^{-1}} \right)\left( x \right)$ Use the definition of compositions of inverse functions, $\begin{align} & \left( h\circ \left( {{g}^{-1}}\circ {{f}^{-1}} \right) \right)\left( x \right)=\left( \left( f\circ I \right)\circ {{f}^{-1}} \right)\left( x \right) \\ & =\left( f\circ {{f}^{-1}} \right)\left( x \right) \\ & =x \end{align}$ Therefore, $\left( h\circ \left( {{g}^{-1}}\circ {{f}^{-1}} \right) \right)\left( x \right)=x$. So, $\left( \left( {{g}^{-1}}\circ {{f}^{-1}} \right)\circ h \right)\left( x \right)=\left( h\circ \left( {{g}^{-1}}\circ {{f}^{-1}} \right) \right)\left( x \right)=x$. From the composition of inverse functions, it can be concluded that ${{h}^{-1}}\left( x \right)=\left( {{g}^{-1}}\circ {{f}^{-1}} \right)\left( x \right)$. Hence, the required result is proved.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.