Elementary and Intermediate Algebra: Concepts & Applications (6th Edition)

Published by Pearson
ISBN 10: 0-32184-874-8
ISBN 13: 978-0-32184-874-1

Chapter 12 - Exponential Functions and Logarithmic Functions - 12.1 Composite Functions and Inverse Functions - 12.1 Exercise Set - Page 788: 71

Answer

$(f^{-1}\circ f)(x)=x$ and $(f\circ f^{-1})(x)=x$, so the given function is the inverse of f.

Work Step by Step

If a function $f$ is one-to-one, then $f^{-1}$ is the unique function for which $(f^{-1}\circ f)(x)=f^{-1}(f(x))=x$ and $(f\circ f^{-1})(x)=f(f^{-1}(x))=x.$ --- $(f^{-1}\circ f)(x)=f^{-1}(f(x))=(f(x))^{3}+4$ $=(\sqrt[3]{x-4})^{3}+4$ $=x-4+4$ $=x$ $(f\circ f^{-1})(x)=f(f^{-1}(x))=\sqrt[3]{f^{-1}(x)-4}$ $=\sqrt[3]{x^{3}+4-4}$ $=\sqrt[3]{x^{3}}$ $=x$ $(f^{-1}\circ f)(x)=x$ and $(f\circ f^{-1})(x)=x$, so the given function is the inverse of f.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.