Elementary and Intermediate Algebra: Concepts & Applications (6th Edition)

Published by Pearson
ISBN 10: 0-32184-874-8
ISBN 13: 978-0-32184-874-1

Chapter 12 - Exponential Functions and Logarithmic Functions - 12.1 Composite Functions and Inverse Functions - 12.1 Exercise Set - Page 788: 59

Answer

$a.\quad 40,44,52,60$ $ b.\quad$Yes, $\displaystyle \quad f^{-1}(x)=\frac{1}{2}x-12$ $c.\quad 8,10,14,18$

Work Step by Step

$ a.\quad$ $f(8)=2(8+12)=2(20)=40$ $f(10)=2(10+12)=2(22)=44$ $f(14)=2(14+12)=2(26)=52$ $f(18)=2(18+12)=2(30)=60$ $ b.\quad$ $f(x)=2x+24$ is a linear function, not constant, so its graph is an oblique line that passes the horizontal line test. It is one-to-one and has an inverse. To find a formula for the inverse, 1. Replace $f(x)$ with $y.$ $y=2x+24$ 2. Interchange $x$ and $y$. (This gives the inverse function.) $x=2y+24$ 3. Solve for $y.$ ... subtract 24, $ x-24=2y,\qquad$ ... divide with 2 $\displaystyle \frac{1}{2}x-12=y $ 4. Replace $y$ with $f^{-1}(x)$ . (This is inverse function notation.) $f^{-1}(x)=\displaystyle \frac{1}{2}x-12$ $ c.\quad$ $f^{-1}(40)=\displaystyle \frac{1}{2}(40)-12=8$ $f^{-1}(44)=\displaystyle \frac{1}{2}(44)-12=10$ $f^{-1}(52)=\displaystyle \frac{1}{2}(52)-12=14$ $f^{-1}(60)=\displaystyle \frac{1}{2}(60)-12=18$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.