Elementary and Intermediate Algebra: Concepts & Applications (6th Edition)

Published by Pearson
ISBN 10: 0-32184-874-8
ISBN 13: 978-0-32184-874-1

Chapter 11 - Quadratic Functions and Equations - Review Exercises: Chapter 11 - Page 772: 16

Answer

$\frac{-9\pm \sqrt{85}}{2}$.

Work Step by Step

${{x}^{2}}+9x=1$. Now, subtract $1$ from both sides: $\begin{align} & {{x}^{2}}+9x=1 \\ & {{x}^{2}}+9x-1=1-1 \\ & {{x}^{2}}+9x-1=0 \end{align}$ Now compare the equation ${{x}^{2}}+9x=1$ with the standard form of the quadratic equation $a{{x}^{2}}+bx+c=0$, Therefore, $a=1,b=9\text{ and }c=-1$ Substitute $a=1,b=9\text{ and }c=-1$into the quadratic formula $x=\frac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$, $\begin{align} & x=\frac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a} \\ & =\frac{-\left( 9 \right)\pm \sqrt{{{\left( 9 \right)}^{2}}-4\cdot 1\cdot \left( -1 \right)}}{2\cdot 1} \\ & =\frac{-9\pm \sqrt{81+4}}{2} \\ & =\frac{-9\pm \sqrt{85}}{2} \end{align}$ Simplify further as shown below, $x=\frac{-9+\sqrt{85}}{2}$ And, $x=\frac{-9-\sqrt{85}}{2}$ Therefore, the solution of the provided expression ${{x}^{2}}+9x=1$ is $\frac{-9\pm \sqrt{85}}{2}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.