Elementary and Intermediate Algebra: Concepts & Applications (6th Edition)

Published by Pearson
ISBN 10: 0-32184-874-8
ISBN 13: 978-0-32184-874-1

Chapter 11 - Quadratic Functions and Equations - Review Exercises: Chapter 11 - Page 772: 15

Answer

$3\text{ and }5$.

Work Step by Step

${{x}^{2}}\left( 3x+4 \right)=4x\left( x-1 \right)+15$. Rewrite the expression ${{x}^{2}}\left( 3x+4 \right)=4x\left( x-1 \right)+15$: $\begin{align} & x\left( 3x+4 \right)=4x\left( x-1 \right)+15 \\ & 3{{x}^{2}}+4x=4{{x}^{2}}-4x+15 \\ \end{align}$ Now, subtract $4{{x}^{2}}$ on both sides: $\begin{align} & 3{{x}^{2}}+4x=4{{x}^{2}}-4x+15 \\ & 3{{x}^{2}}+4x-4{{x}^{2}}=4{{x}^{2}}-4{{x}^{2}}-4x+15\,\,\, \end{align}$ Combine the like terms as, $\begin{align} & 3{{x}^{2}}+4x-4{{x}^{2}}=4{{x}^{2}}-4{{x}^{2}}-4x+15\,\,\, \\ & 3{{x}^{2}}+4x-4{{x}^{2}}=-4x+15\,\,\, \\ & 4x-{{x}^{2}}=-4x+15\,\,\, \end{align}$ Now, add $4x$ on both sides as, $\begin{align} & 4x-{{x}^{2}}=-4x+15\,\, \\ & 4x-{{x}^{2}}+4x=4x-4x+15\,\, \\ & 8x-{{x}^{2}}=15 \\ \end{align}$ Now, subtract $15$ on both sides as, $\begin{align} & 8x-{{x}^{2}}=15 \\ & 8x-{{x}^{2}}-15=15-15 \\ & 8x-{{x}^{2}}-15=0 \\ & {{x}^{2}}-8x+15=0 \end{align}$ Compare the expression with the equation $a{{x}^{2}}+bx+c=0$. Thus, $a=1,b=-8,c=15$ Now, place these values in the quadratic equation formula, $\begin{align} & x=\frac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a} \\ & =\frac{-\left( -8 \right)\pm \sqrt{{{\left( -8 \right)}^{2}}-4\cdot 1\cdot 15}}{2\cdot 1} \\ & =\frac{8\pm \sqrt{64-60}}{2} \\ & =\frac{8\pm \sqrt{4}}{2} \end{align}$ Thus: $\begin{align} & x=\frac{8\pm \sqrt{4}}{2} \\ & x=\frac{8\pm 2}{2} \\ \end{align}$ Now, from the principle of squares property, $x=\frac{8+2}{2}$ or $x=\frac{8-2}{2}$ Now, consider the value $x=\frac{8-2}{2}$: $\begin{align} & x=\frac{8-2}{2} \\ & =\frac{6}{2} \\ & =3 \end{align}$ Now consider the value $x=\frac{8+2}{2}$: $\begin{align} & x=\frac{8+2}{2} \\ & =\frac{10}{2} \\ & =5 \end{align}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.