Answer
$x=\{-3,-2\}$
Work Step by Step
Squaring both sides of the equation and then using the properties of equality, we obtain:
\begin{array}{l}\require{cancel}\left(
\sqrt{x+3}
\right)^2=\left(
x+3
\right)^2
\\\\
x+3=(x)^2+2(x)(3)+(3)^2
\\\\
x+3=x^2+6x+9
\\\\
0=x^2+(6x-x)+(9-3)
\\\\
x^2+5x+6=0
\\\\
(x+3)(x+2)=0
\\\\
x=\{-3,-2\}
.\end{array}
Upon checking, both solutions satisfy the original equation. Hence, $
x=\{-3,-2\}
.$