Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 2 - Matrices and Systems of Linear Equations - 2.2 Matrix Algebra - Problems - Page 138: 50

Answer

$A(t)dt=\begin{bmatrix} -5t & \arctan t & \frac{e^{3t}}{3}\\ \end{bmatrix} $

Work Step by Step

Given: $A(t)=\begin{bmatrix} -5 & \frac{1}{t^2+1} & e^{3t}\\ \end{bmatrix}$ The antiderivative of the matrix function is given by: $\int^b_aA(t)dt=\int^b_aa_{ij}(t)dt$ Hence here, $A(t)dt=\int\begin{bmatrix}-5 & \frac{1}{t^2+1} & e^{3t} \end{bmatrix}dt=\begin{bmatrix} -5t & \arctan t & \frac{e^{3t}}{3}\\ \end{bmatrix} $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.