Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 2 - Matrices and Systems of Linear Equations - 2.2 Matrix Algebra - Problems - Page 138: 47

Answer

$=\begin{bmatrix} 1\\ 1 \end{bmatrix}$

Work Step by Step

Given: $A(t)=\begin{bmatrix} \cos t \\ \sin t \end{bmatrix}$ The antiderivative of the matrix function is given by: $\int^b_aA(t)dt=\int^b_aa_{ij}(t)dt$ Hence here, $\int^b_a=\int ^{\frac{\pi}{2}}_0\begin{bmatrix} \cos t \\ \sin t \end{bmatrix}=\begin{bmatrix} \sin \frac{\pi}{2} - \sin 0 \\ -\cos \frac{\pi}{2} - \cos 0 \end{bmatrix}=\begin{bmatrix} 1\\ 1 \end{bmatrix}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.