Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 2 - Matrices and Systems of Linear Equations - 2.2 Matrix Algebra - Problems - Page 138: 48

Answer

$\int^b_a=\begin{bmatrix} e-1 & \frac{e^{2}-1}{2} & \frac{1}{3}\\ 2(e-1) & 2(e^{2}-1) & \frac{5}{3} \end{bmatrix}$

Work Step by Step

Given: $A(t)=\begin{bmatrix} e^t & e^{2t} & t^2\\ 2e^t & 4e^{2t} & 5t^2 \end{bmatrix}$ The antiderivative of the matrix function is given by: $\int^b_aA(t)dt=\int^b_aa_{ij}(t)dt$ Hence here, $\int^b_a=\int ^1_0\begin{bmatrix} e^t & e^{2t} & t^2\\ 2e^t & 4e^{2t} & 5t^2 \end{bmatrix}=\begin{bmatrix} e^t & \frac{e^{2}}{2} & \frac{1}{3}\\ 2e & 2e^{2} & \frac{5}{3} \end{bmatrix}-\begin{bmatrix} 1& \frac{1}{2} & 0\\ 2& 2 &0 \end{bmatrix}=\begin{bmatrix} e-1 & \frac{e^{2}-1}{2} & \frac{1}{3}\\ 2(e-1) & 2(e^{2}-1) & \frac{5}{3} \end{bmatrix}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.