Answer
$P(x)=(x-3)(x+3)[x+(\frac{3}{2}+\frac{3\sqrt 3}{2}i)][x+(\frac{3}{2}-\frac{3\sqrt 3}{2}i)][x-(\frac{3}{2}+\frac{3\sqrt 3}{2}i)][x-(\frac{3}{2}-\frac{3\sqrt 3}{2}i)]$
The zeros of the function are: $\{3,-3,\frac{-3}{2}-\frac{3\sqrt 3}{2}i,\frac{-3}{2}+\frac{3\sqrt 3}{2}i,\frac{3}{2}-\frac{3\sqrt 3}{2}i,\frac{-3}{2}+\frac{3\sqrt 3}{2}i\}$
$x =-3$ with multiplicity 1
$x =3$ with multiplicity 1
$x =\frac{-3}{2}-\frac{3\sqrt 3}{2}i$ with multiplicity 1
$x =\frac{-3}{2}+\frac{3\sqrt 3}{2}i$ with multiplicity 1
$x =\frac{3}{2}+\frac{3\sqrt 3}{2}i$ with multiplicity 1
$x =\frac{3}{2}-\frac{3\sqrt 3}{2}i$ with multiplicity 1
Work Step by Step
Factor the polynomial completely to obtain:
$P(x)=x^{6}-729$
$P(x)=(x^{3}-27)(x^{3}+27)$
$P(x)=(x-3)(x^{2}+3x+9)(x+3)(x^{2}-3x+9)$
$P(x)=(x-3)(x+3)[x+(\frac{3}{2}+\frac{3\sqrt 3}{2}i)][x+(\frac{3}{2}-\frac{3\sqrt 3}{2}i)][x-(\frac{3}{2}+\frac{3\sqrt 3}{2}i)][x-(\frac{3}{2}-\frac{3\sqrt 3}{2}i)]$
Equate each unique factor to zero then solve each equation to obtain:
$x-3=0 \rightarrow x=3$
$x+3=0 \rightarrow x=-3$
$x+(\frac{3}{2}+\frac{3\sqrt 3}{2}i)=0 \rightarrow x=\frac{-3}{2}-\frac{3\sqrt 3}{2}i$
$x+(\frac{3}{2}-\frac{3\sqrt 3}{2}i)=0 \rightarrow x=\frac{-3}{2}+\frac{3\sqrt 3}{2}i$
$x-(\frac{3}{2}+\frac{3\sqrt 3}{2}i)=0 \rightarrow x=\frac{3}{2}+\frac{3\sqrt 3}{2}i$
$x-(\frac{3}{2}-\frac{3\sqrt 3}{2}i)=0 \rightarrow x=\frac{3}{2}-\frac{3\sqrt 3}{2}i$
The zeros of the function are: $\{3,-3,\frac{-3}{2}-\frac{3\sqrt 3}{2}i,\frac{-3}{2}+\frac{3\sqrt 3}{2}i,\frac{3}{2}-\frac{3\sqrt 3}{2}i,\frac{-3}{2}+\frac{3\sqrt 3}{2}i\}$
$x =-3$ with multiplicity 1
$x =3$ with multiplicity 1
$x =\frac{-3}{2}-\frac{3\sqrt 3}{2}i$ with multiplicity 1
$x =\frac{-3}{2}+\frac{3\sqrt 3}{2}i$ with multiplicity 1
$x =\frac{3}{2}+\frac{3\sqrt 3}{2}i$ with multiplicity 1
$x =\frac{3}{2}-\frac{3\sqrt 3}{2}i$ with multiplicity 1