Answer
$P(x)=x[x-(\frac{1}{2}+\frac{\sqrt 3}{2}i)][x+(\frac{1}{2}-\frac{\sqrt 3}{2}i)]$
The zeros of the function are: $\{0,\frac{1}{2}-\frac{\sqrt 3}{2}i,\frac{1}{2}+\frac{\sqrt 3}{2}i\}$
$x =0$ with multiplicity 1
$x =\frac{1}{2}-\frac{\sqrt 3}{2}i$ with multiplicity 1
$x = \frac{1}{2}+\frac{\sqrt 3}{2}i$ with multiplicity 1
Work Step by Step
Factor the polynomial completely to obtain:
$P(x)=x^{3}-x^{2}+x$
$P(x)=x(x^{2}-x+1)$
$P(x)=x[x-(\frac{1}{2}+\frac{\sqrt 3}{2}i)][x+(\frac{1}{2}-\frac{\sqrt 3}{2}i)]$
Equate each unique factor to zero then solve each equation to obtain:
$x=0$
$x-(\frac{1}{2}+\frac{\sqrt 3}{2}i)=0 \rightarrow x=\frac{1}{2}+\frac{\sqrt 3}{2}i$
$x-(\frac{1}{2}-\frac{\sqrt 3}{2}i)=0 \rightarrow x=\frac{1}{2}-\frac{\sqrt 3}{2}i$
The zeros of the function are: $\{0,\frac{1}{2}-\frac{\sqrt 3}{2}i,\frac{1}{2}+\frac{\sqrt 3}{2}i\}$
$x =0$ with multiplicity 1
$x =\frac{1}{2}-\frac{\sqrt 3}{2}i$ with multiplicity 1
$x = \frac{1}{2}+\frac{\sqrt 3}{2}i$ with multiplicity 1