College Algebra 7th Edition

Published by Brooks Cole
ISBN 10: 1305115546
ISBN 13: 978-1-30511-554-5

Chapter 3, Polynomial and Rational Functions - Section 3.5 - Complex Zeros and the Fundamental Theorem of Algebra - 3.5 Exercises - Page 329: 24

Answer

$P(x)=x[x-(\frac{1}{2}+\frac{\sqrt 3}{2}i)][x+(\frac{1}{2}-\frac{\sqrt 3}{2}i)]$ The zeros of the function are: $\{0,\frac{1}{2}-\frac{\sqrt 3}{2}i,\frac{1}{2}+\frac{\sqrt 3}{2}i\}$ $x =0$ with multiplicity 1 $x =\frac{1}{2}-\frac{\sqrt 3}{2}i$ with multiplicity 1 $x = \frac{1}{2}+\frac{\sqrt 3}{2}i$ with multiplicity 1

Work Step by Step

Factor the polynomial completely to obtain: $P(x)=x^{3}-x^{2}+x$ $P(x)=x(x^{2}-x+1)$ $P(x)=x[x-(\frac{1}{2}+\frac{\sqrt 3}{2}i)][x+(\frac{1}{2}-\frac{\sqrt 3}{2}i)]$ Equate each unique factor to zero then solve each equation to obtain: $x=0$ $x-(\frac{1}{2}+\frac{\sqrt 3}{2}i)=0 \rightarrow x=\frac{1}{2}+\frac{\sqrt 3}{2}i$ $x-(\frac{1}{2}-\frac{\sqrt 3}{2}i)=0 \rightarrow x=\frac{1}{2}-\frac{\sqrt 3}{2}i$ The zeros of the function are: $\{0,\frac{1}{2}-\frac{\sqrt 3}{2}i,\frac{1}{2}+\frac{\sqrt 3}{2}i\}$ $x =0$ with multiplicity 1 $x =\frac{1}{2}-\frac{\sqrt 3}{2}i$ with multiplicity 1 $x = \frac{1}{2}+\frac{\sqrt 3}{2}i$ with multiplicity 1
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.