Big Ideas Math - Algebra 1, A Common Core Curriculum

Published by Big Ideas Learning LLC
ISBN 10: 978-1-60840-838-2
ISBN 13: 978-1-60840-838-2

Chapter 9 - Solving Quadratic Equations - Chapter Review - Page 536: 34

Answer

The solutions are $(1+\sqrt{15},7+2\sqrt{15})$ and $(1-\sqrt{15},7-2\sqrt{15})$.

Work Step by Step

The given system is $y=x^2-9$ ...... (1) $y=2x+5$ ...... (2) Subtract equation (2) from equation (1). $\Rightarrow y-y=x^2-9-(2x+5)$ $\Rightarrow y-y=x^2-9-2x-5$ Simplify. $\Rightarrow 0=x^2-2x-14$ Add $15$ to each side. $\Rightarrow 0+15=x^2-2x-14+15$ Simplify. $\Rightarrow 15=x^2-2x+1$ Write the right side terms as square of the polynomial. $\Rightarrow 15=(x-1)^2$ Take square root on each side. $\Rightarrow \pm\sqrt{15}=x-1$ Add $a$ to each side. $\Rightarrow 1\pm\sqrt{15}=x-1+1$ Simplify. $\Rightarrow 1\pm\sqrt{15}=x$ Substitute $1+\sqrt{15}$ for $x$ in equation (2). $\Rightarrow y=2(1+\sqrt{15})+5$ Simplify. $\Rightarrow y=2+2\sqrt{15}+5$ $\Rightarrow y=7+2\sqrt{15}$ Substitute $1-\sqrt{15}$ for $x$ in equation (2). $\Rightarrow y=2(1-\sqrt{15})+5$ Simplify. $\Rightarrow y=2-2\sqrt{15}+5$ $\Rightarrow y=7-2\sqrt{15}$ Hence, the solutions are $(1+\sqrt{15},7+2\sqrt{15})$ and $(1-\sqrt{15},7-2\sqrt{15})$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.