Big Ideas Math - Algebra 1, A Common Core Curriculum

Published by Big Ideas Learning LLC
ISBN 10: 978-1-60840-838-2
ISBN 13: 978-1-60840-838-2

Chapter 9 - Solving Quadratic Equations - 9.1 - Properties of Radicals - Monitoring Progress - Page 484: 28

Answer

$2$.

Work Step by Step

The given expression is $=\sqrt[3]{-4}(\sqrt[3]{2}-\sqrt[3]{16})$ Factor as cube terms. $=\sqrt[3]{-4}(\sqrt[3]{2}-\sqrt[3]{8\cdot 2})$ Use product property of square roots. $=\sqrt[3]{-4}(\sqrt[3]{2}-\sqrt[3]{8}\cdot \sqrt[3]{2})$ Use $8=2^3$. $=\sqrt[3]{-4}(\sqrt[3]{2}-\sqrt[3]{2^3}\cdot \sqrt[3]{2})$ Simplify. $=\sqrt[3]{-4}(\sqrt[3]{2}-2\sqrt[3]{2})$ Use distributive property. $=\sqrt[3]{-4}\cdot \sqrt[3]{2}(1-2)$ Subtract. $=\sqrt[3]{-4}\cdot \sqrt[3]{2}(-1)$ Use product property of square roots. $=\sqrt[3]{-4\cdot 2}(-1)$ Multiply. $=\sqrt[3]{-8}(-1)$ Use $-8=(-2)^3$. $=\sqrt[3]{(-2)^3}(-1)$ Simplify. $=(-2)(-1)$ $=2$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.