Answer
$t^3-7t^2+11t-2$.
Work Step by Step
The given expression is
$=(t-2)(t^2-5t+1)$
Distribute $(t^2-5t+1)$ to each term of $(t-2)$.
$=t(t^2-5t+1)-2(t^2-5t+1)$
Use distributive property.
$=t(t^2)+t(-5t)+t(1)-2(t^2)-2(-5t)-2(1)$
Multiply.
$=t^3-5t^2+t-2t^2+10t-2$
Combine like terms.
$=t^3-7t^2+11t-2$
Hence, the product is $t^3-7t^2+11t-2$.